
Working Seminar on Mirror Symmetry - Spring 2014
Thema
This seminar is an introduction to mirrory symmetry. Our leading thread will be the lecture notes of Auroux [7].
This Spring (2014), we will continue our investigation of mirror symmetry and focus
on its different aspects.
Meeting Time
Wednesdays, 11.10 - 12.10 in MP 3311
Schedule
- Overview (Enka)
- The Elliptic Curve (Jimmy)
- Quantum Schubert Calculus : (1) The classical case (Francois)
- Deformation of Complex Structures (Yi Lin)
- ... - Representation Quivers (Jimmy)
- ... - Quintic Threefold (Enka)
- ... - Gromov Witten Invariants (Yi Lin)
- ...
References
-
[1]
Hori, Kentaro et al.
Mirror Symmetry.
Clay Mathematics Monographs, 1. American Mathematical Society, Providence, RI; Clay
Mathematics Institute, Cambridge, MA, 2003. xx+929 pp. ISBN:
0-8218-2955-6 [PDF]
- [2] Cox, David A. and Katz, Sheldon. Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, 68. American Mathematical Society, Providence, RI, 1999. xxii+469 pp. ISBN: 0-8218-1059-6
-
[3]
Voisin, Claire.
Symétrie Miroir.
Panoramas et Synthèses 2. SMF 1996.
[PDF]
-
[4]
Candelas, Philip et al.
A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory.
Nuclear Physics B,
Volume 359, Issue 1, 29 July 1991, Pages 21-74,
[PDF]
-
[5]
Galison, Peter.
Mirror symmetry: persons, values, and objects.
Growing Explanations. Editor M. Norton Wise. Duke University Press
[PDF]
-
[6]
Aspinwall, Paul et al.
Dirichlet Branes and Mirror Symmetry.
Clay Mathematics Monographs
[PDF]
- [7] Auroux, Denis 18.969 Topics in Geometry: Mirror Symmetry, Spring 2009. [HTML]